

SweetWater Health Professional HRV for Health Professionals

March 8, 2023

Introducing Professional HRV

- Securely monitor your patients and clients HRV
 - Currently only on iOS devices

demouser1@sweetwaterhrv.c..

demouser2@sweetwaterhrv.c...

demouser3@sweetwaterhrv.c...

demouser4@sweetwaterhrv.c...

demouser5@sweetwaterhrv.c...

demouser6@sweetwaterhrv.c...

1:19 PM

demouser1@sweetwaterhrv.c...

2017-12-08

82 5:09:15 AM
Morning Recovery CheckUp

2017-12-07

84 6:20:54 AM
Morning Recovery CheckUp

2017-12-06

70 5:53:01 AM
Morning Recovery CheckUp

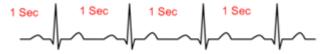
2017-12-04

84 5:50:38 AM
Morning Recovery CheckUp

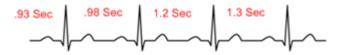
2017-12-03

82 6:34:59 AM
Morning Recovery CheckUp

- View graphs and stats from sessions
- Learn more <u>here</u>

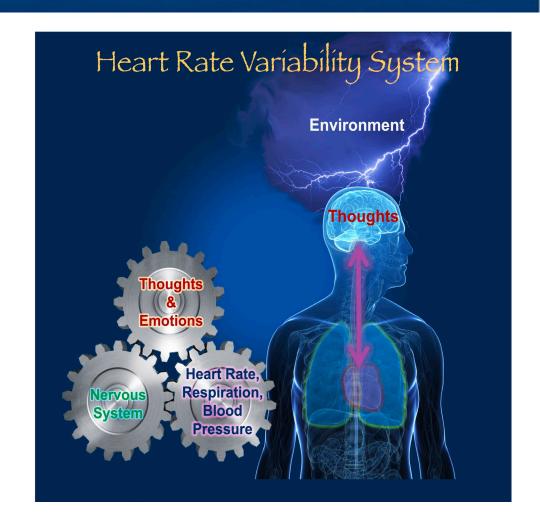

Introduction for Health Practitioners More on the app later. What is HRV?

- Millions of people seek to improve their health using a variety of modalities
 - Self-Help books, Alternative health practitioners including Chiropractic, Acupuncture, supplements and energy work
- Treatments may do nothing or even be contraindicated for some people
 - What helps one client/patient may do nothing or even hurt another
- Standardized treatment protocols often produce well documented results however they do not take individual responses into account
 - Age, gender, race, baseline fitness level and genetic factors are known determinants of individual differences in responses to treatments
- The status of the Nervous System is an important indictor of the body's response to any type of intervention be it physical, psychological, energetic or involve supplements or other substances
 - Nervous System measures indicate individual responses
- Heart Rate Variability (HRV) is a view into the nervous system
 - HRV is reflection of vagal tone which is affected by life in general
 - HRV can be used to guide an optimal treatment program
 - HRV is non-invasive and can be measured with an off the heart rate monitor



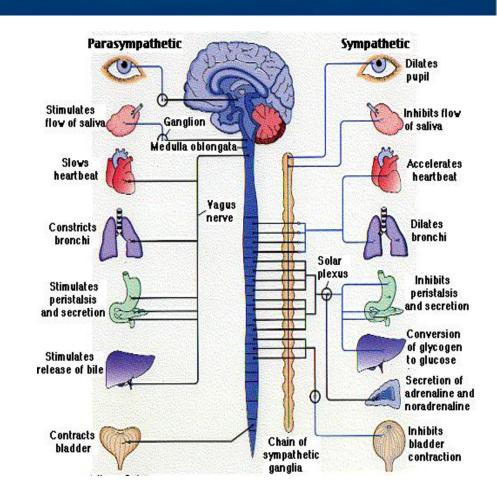
First: What is HRV?

- What is Heart Rate Variability (HRV)?
- HRV is the variation in time between each heart beat

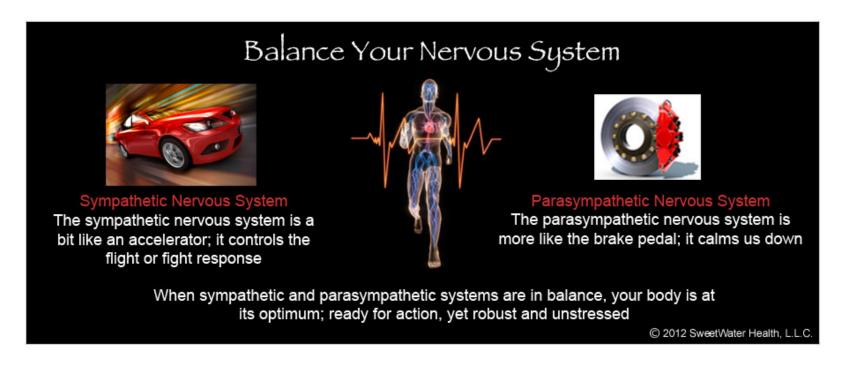


This illustration shows an unhealthy Heart Rate Variability with constant 1 sec intervals between beats

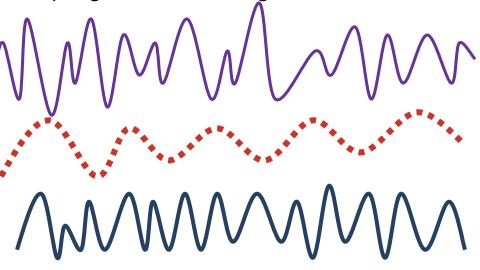
This illustration shows a healthy heart rate variability with variation between beats

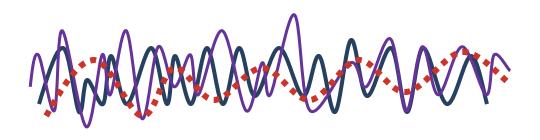

- This variation in time between beats is caused by a "tug of war" between the sympathetic nervous system speeding the heart up and the parasympathetic slowing it down
- HRV has been researched for more than 30 years

HRV and Vagal Tone


- The Vagus Nerve is the 10th of 12 paired cranial nerves and relays information from the brain stem to most internal organs
- It controls parasympathetic innervation of the heart and acts to lower the heart rate.
- Vagal innervation is the mediator of HRV and therefore HRV is an indication of Vagal Tone
- The stronger the Vagal Tone, the higher the HRV
- Higher HRV is an indication of an individuals ability to "put the brakes on stress" by mediating the sympathetic control over the nervous system and heart rate.

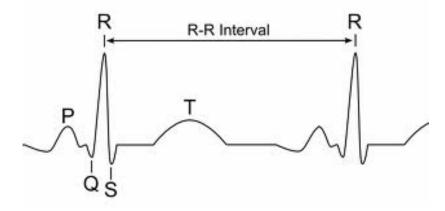
The Autonomic Nervous System

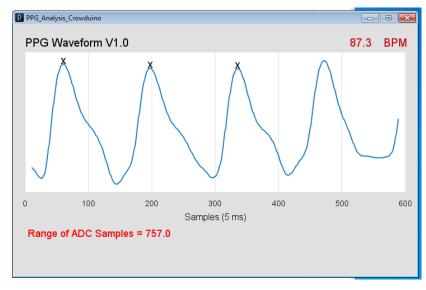

- The Autonomic Nervous System (ANS) has two main branches:
 - Sympathetic (Fight or Flight) Branch
 - Parasympathetic (Rest and Repair Branch)
- The Enteric Nervous System (ENS) is the third branch of the ANS
 - Also known as the "Gut Brain" or "Second Brain"
 - Not a known contributor to HRV



HRV Components

- HRV is a reflection of the degree of coupling between biological oscillators
- Sinoatrial (SA) Node
 - Sympathetic Nervous System
 - Parasympathetic Nervous System
 - Respiratory Sinus Arrhythmia
 - Baroreceptors
 - Chemoreceptors
- Atrioventicular (VA) Node
 - Vagus Nerve
 - Minimal Contribution to HRV
- Healthy coupling -> Complexity
 - Circadian Rhythm
 - Deterministic Chaos
 - Random Fractal
 - Oscillatory
 - Regular Polynomial
 - 1/f noise

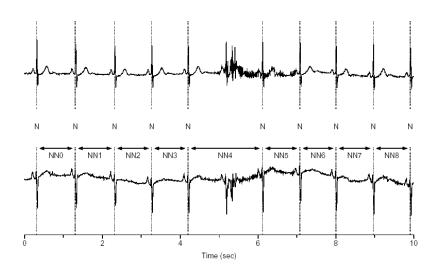



How is HRV Calculated? RR Intervals Defined

- HRV calculations are performed on the "RR interval time series". What exactly is that?
 - ECG "R" point can be though of as the beat time
 - The R-R interval is the time between beats
- The resulting "RR interval time series" looks something like this:

0.978516 0.982422 1.06641 1.06738 0.974609 1.05273

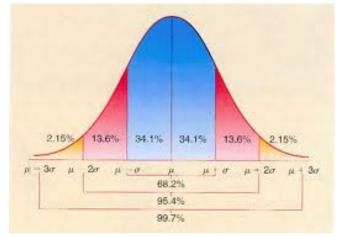
- Optical HR sensors such as Apple Watch, Oura Ring, Whoop and Fitbit measure expansion and contraction of capillaries
 - Very difficult to detect exact beat times
 - Very sensitive to motion

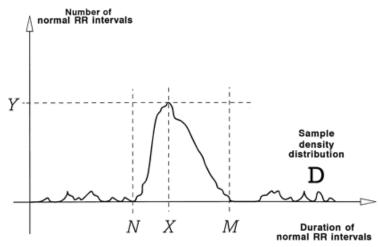


False/Missed Normal Beat Detection

- HRV calculations are very sensitive to RR inputs including noise and missed beats
- Standard practice is to remove these "ectopic beats" and noise before performing HRV calculations
- Quality of reading is critical!
 - Will demonstrate in Kubios

Source: Time Domain Measures: From Variance to pNNx Joseph E. Mietus Beth Israel Deaconess Medical Center Harvard Medical School

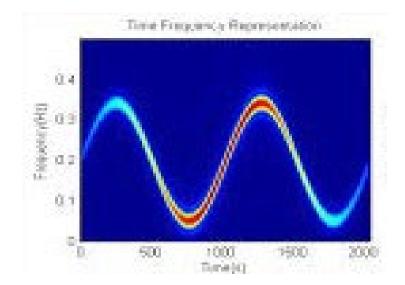

HRV Can Be Measured in Multiple Ways

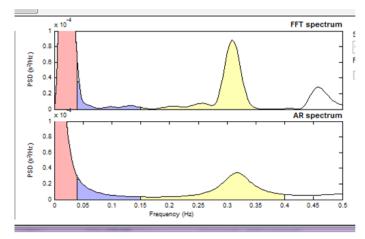

Statistical Analysis

- SDNN (ms)
 - The standard deviation of all RR intervals
 - RR intervals have also been called NN intervals which is why SDNN instead of SDRR
- rMSSD (ms)
 - Root Mean Square of Successive Differences between adjacent RR intervals
- pNN50 (%)
 - The percentage of adjacent RR intervals that differ by more than 50ms

Geometric Methods

- Triangular Index
- TINN (ms)


HRV Can Be Measured in Multiple Ways


Frequency analysis

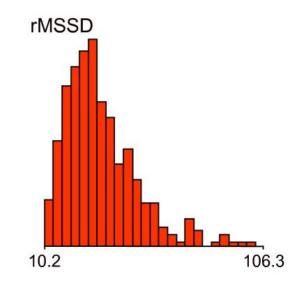
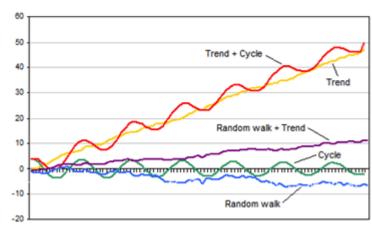
- Very Low Frequency (VLF) (ms²⁾
 - Association debated
- Low Frequency (LF) (ms²⁾
 - Associated with primarily sympathetic activation
 - May have some contribution from parasympathetic
- High Frequency (HF), (ms²⁾
 - Associated with parasympathetic activation
- Lfnu
 - LF normalized
 - Lfnu + Hfnu = 100 Always
- Hfnu
 - HF normalized
- Peak Power (Hz)
 - The frequency at which the power for each region is at a maximum
 - May reflect breathing frequency during exercise or paced deep breathing

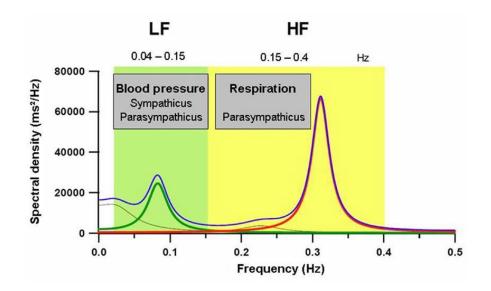
Non-Linear:

SD1/SD2, ApEn, SampEN, DFA

HRV Parameters of Interest: rMSSD

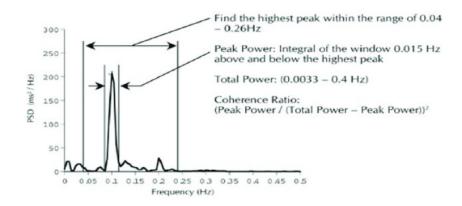
- rMSSD is a reflection of Vagal Tone
 - rMSSD is non-stationary and varies +/- 10 ms at rest
 - Average rMSSD ranges from ~20ms to ~80ms depending on age and state of health
 - Generally calculated on 5 minute window
 - 3 minute window is offered as an option
 - Used (along with HF) in clinical research to assess Vagal Tone
- The "HRV" value in the app is rMSSD scaled to a value from 0-100 for ease of use
 - Each application uses a slightly different scaling algorithm so it is important to choose one and stick with it
- A high HRV (rMSSD) is an indication of strong vagal tone and stress recovery

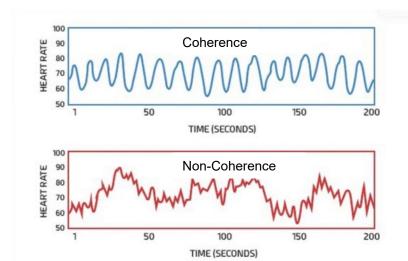




Table 1 Non-stationary behavior

HRV Parameters of Interest: LF, HF

- LF is associated with sympathetic nervous system
- HF associated with parasympathetic nervous system
- There are industry standards for LF and HF frequency ranges
 - LF = 0.04hz 0.15Hz
 - HF = 0.15hz 0.4hz
- LF and HF Ratio is another standard of measure
 - Represents a measure of sympatho-vagal balance
 - LF/HF < 2 is indication healthy *resting* ANS balance

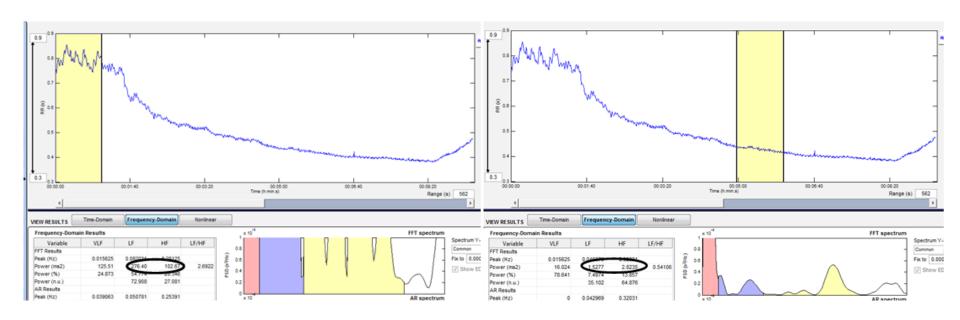




Rhythmic Breathing Power Also known as Coherence

- When breathing is paced and rhythmic, the power levels will be focused around the frequency of the breathing as shown.
- This is primarily due to what is called Respiratory Sinus Arrhythmia
 - Respiration influences ANS
- HeartMath Coherence is an example with power spike at around 0.15Hz
 - Induced through deep regular breathing
 - Feeling of love, gratitude, appreciation
- Example shows real time heart rate in Coherent and Non-Coherent state.
 - We are mostly non-coherent as our nervous system reacts and responds to life

Heart Rhythm Coherence Ratio Calculation



Deeper Dive into Power Levels

- LF and HF units are Power
 - Technically called Power Spectral Density or PSD
 - Power represents "Power Level" of Nervous System

$$LF = 1.5$$
, $HF = 2.8$
 $Lfnu = 35$, $Hfnu = 64$

HRV Additional Information

- HRV is an indication of your resilience the ability of the nervous system to respond and recover from physical or psychological stressors
- IMPORTANT: HRV values depend on length of measurement
 - 5 Minutes = Short term HRV
 - 24 Hour = Long term HRV
- IMPORTANT: HRV is age and gender dependent
- HRV has a circadian rhythm
- HRV may change day to day with your biorhythm or due to emotional or physical stress
 - Jo Beth Dow discovered a yearly rhythm in her Quantified Self analysis
- Chronic low HRV is an indication of systemic health (psychological or physical) issues

Data Analysis

- There are 4 major HRV metrics to consider
 - rMSSD/HRV
 - "HRV" is derived from rMSSD -> 0-100 values easier to understand than raw rMSSD
 - Stress level -> derived from LF/HF and represents the balance of the nervous system
 - LF Power -> represents the sympathetic or "fight or flight" response
 - HF Power -> represents the parasympathetic or "rest and repair" response
- IMPORTANT In order to meet the accepted definition for "Short Term HRV", SweetBeatLife algorithms operate on a 5 minute window. While rMSSD/HRV settle down in 3 minutes, LF and HF do not!
 - When evaluating LF and HF, a minimum of 5 minutes is required

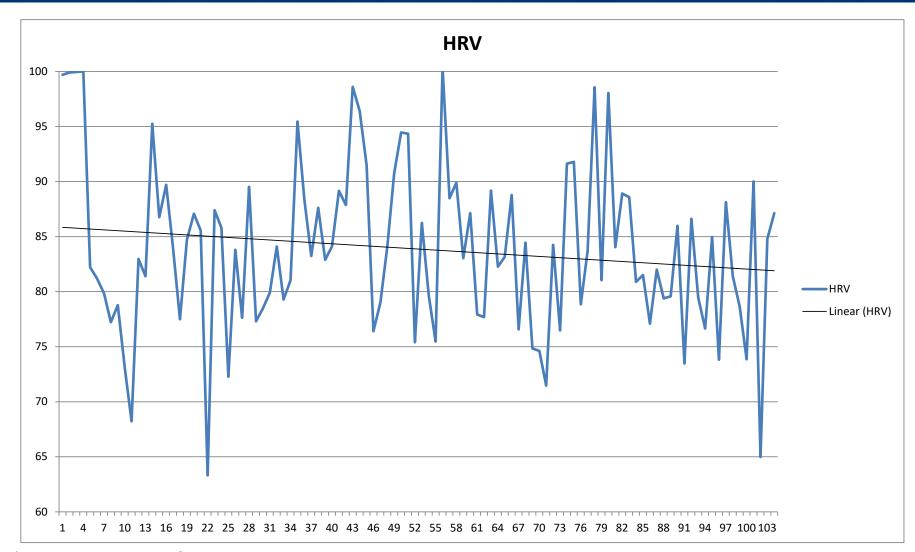
HRV Interpretation This includes HRV, IMSSD, LF, HF

- HRV can vary greatly from person to person depending on health and fitness
- HRV can vary greatly for an individual from day to day and even hour to hour
- While there are "average HRV values" determined through clinical research, HRV is dynamic and individuals will tend to have their own range
- Some athletes have HRV values that are magnitudes higher than average persons
- Some healthy and fit individuals may have values at the high end of average

		Average
Gender	Age	SweetBeat HRV
Male	10-29	72.29827
Female		67.68875
Male	30-49	62.51162
Female		60.47521
Male	50-69	52.91486
Female		55.733
Male	70-99	52.91486
Female		52.91486

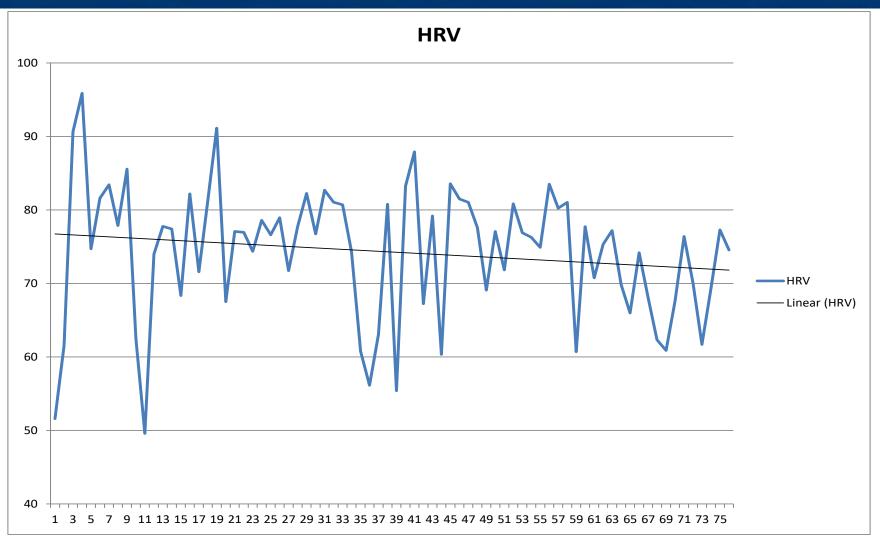
		Age 20's	Age 30's	Age 40+
Average LF	Male	1480	678	212
	Female	804	336	330
Average HF	Male	925	314	131
	Female	528	311	156

- Source:
- http://www.anti-aging.gr.jp/english/pdf/2010/7 94.pdf
- Values based on 5 minute measurements

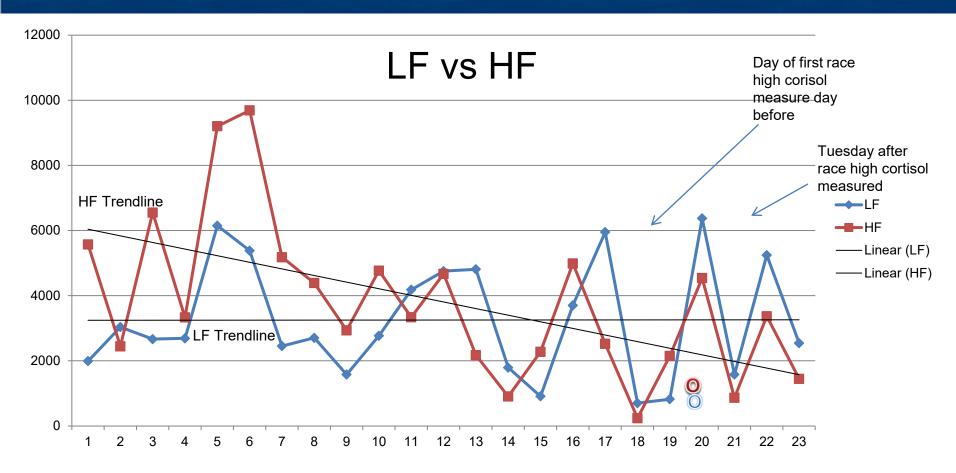

Healthy vs Un-Healthy Variations

- Through time you will start to see the individual range for each client
 - The following graphs indicate healthy and expected variations of HRV
 - This range may trend down by 10% during heavy exercise or high stress
 - Average stress is "yellow" with sensitivity setting = 5 (LF/HF avg <1.5)
- Red Flag Warnings
 - Established normal range drops more than 30% and becomes the new norm
 - HRV < 50 (rMSSD < 20) consistently</p>
 - LF, HF < 100 consistently *</p>
 - LF/HF > 10 consistently * = chronic stress, lack of sleep or other
 - NOTE: Sessions are run while supine or sitting, NOT during exercise

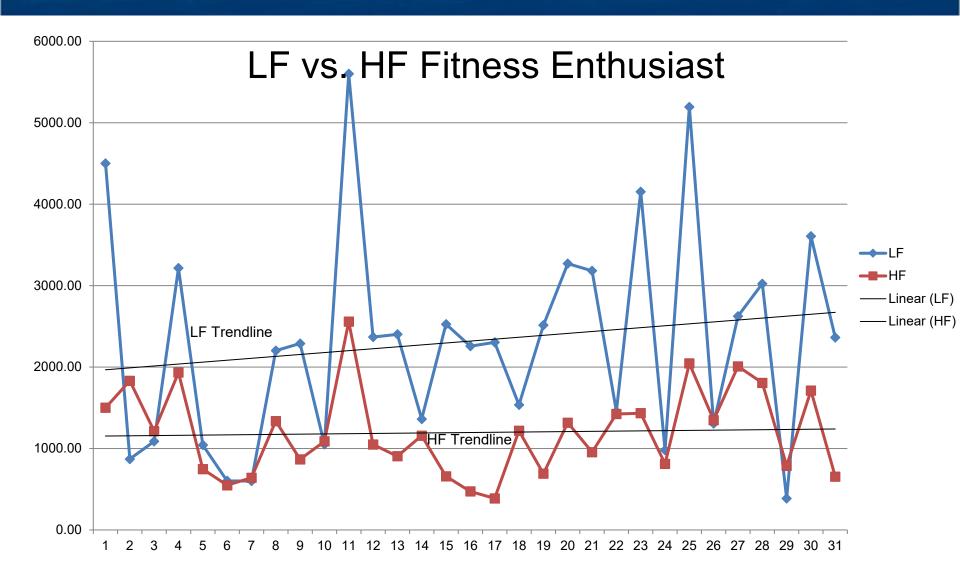
^{*} Minimum session length = 5 minutes



HRV* Example #1


HRV* Example #2

*HRV measured using SweetBeat



LF, HF Power, Elite Athlete

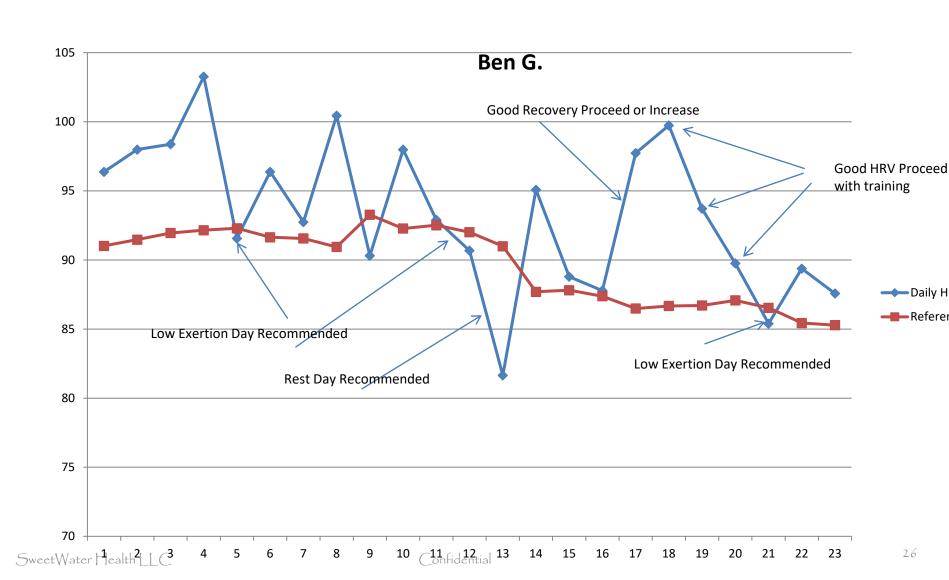
LF, HF Power, Fitness Enthusiast

Use Models for Coaches and Trainers

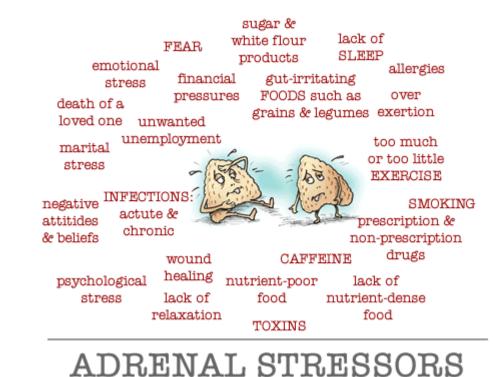
- SweetBeatLife features used by coaches and trainers
 - HRV for Training Feature
 - Coach provides specific Instructions of how and when to take reading
 - Stress Monitoring
 - Daily stressors also affect performance
 - Usually includes stress awareness and reduction techniques
 - Breath work
 - Meditation/Yoga
 - Heart Rate Recovery
 - Another measure of ANS flexibility
 - Food Sensitivity
 - Nutrition and inflammation interact negatively with cortisol and adrenaline

HRV for Training Willpower: When and How to Measure

HRV has a circadian rhythm


 HRV is dependent on body position

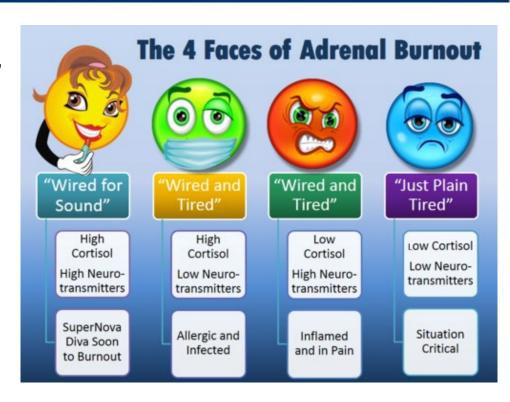
- HRV value is dependent on length of measurement
- HRV taken at same time each day
 - First thing in the morning while lying in bed is recommended
 - Try to keep a blank mind. Thoughts about a busy day can effect the reading
 - Don't surf the web on you phone!!!
 - In same position
 - Lying down
 - Sitting
 - Standing
 - Timed measurement (3-5minutes)


HRV for Training Example

Stress, Food, HRV and Optimal Performance

- Inflammation is a common reaction to a hardcore work out and is part of the recovery process
- Inflammation is an innate response to stress, illness, poor gut function or eating toxic foods
 - Stress increases cortisol which contributes to inflammation
- What causes stress for one person will not cause stress for another
 - Same thing goes for food
 - Individuals need to track what works and doesn't for them
- Interdependence of our body functions make it complicated

Source: http://robbwolf.com/2012/04/09/real-deal-adrenal-fatigue/


source: "Adrenal Fatigue," Wilson

BALANCED**BITES**

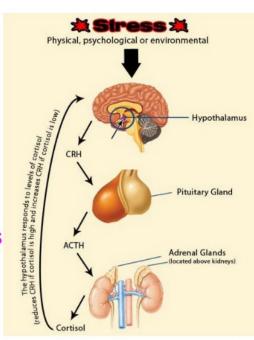
"It's Complicated"

- When this response becomes the norm for your body, whether it is from workouts, stress or food, it becomes a low-level feature in your physiology
 - Mild, chronic, inflammation produces few symptoms and subtle changes on blood tests, though has a very different effect on your metabolism
 - Chronic low-grade inflammation makes your brain and body resistant to the normal regulatory effects of hormones, including insulin and cortisol
 - It interferes with recovery and thus optimal performance
- It is recommended that stress and diet be monitored in addition to HRV for optimal performance

Source: http://www.integrativepsychiatry.net/adrenal_fatigue.html

HRV, HPA and Sleep

- Though 'adrenal fatigue' is not an accepted term in the medical community, malfunctions of the stress response system are a very real phenomenon. The sympathetic branch of the nervous system activates production of fight or flight hormones, including cortisol.
 - Modern perceived stressors and over reaching training keep fight or flight in chronic "on" position
- HRV, HPA and Sympathetic activation during stress test
 - HRV is used to measure ANS (SNS and PNS)
 - SNS activates the HPA see next slide
- Cortisol is one of the moderators of sleep cycles and has 24 hour circadian rhythm
 - Stress hormone helpful in the short term, harmful in the long fun as it weakens the immune system
 - Released by adrenal gland and regulated by the pituitary gland (and hypothalamus indirectly)
 - Cortisol has feedback inhibition of CRH and ACTH
 - Cortisol is at peak in morning around 9am, decreases gradually with a dip around noon and 3-4 pm then continuous drop until midnight when it start the gradual increase to a max at 9am.
- Dysfunctional HPA axis activity may play a role in some sleep disorders, but in other cases the HPA axis dysfunction is
 actually the result of a sleep disorder, as seen in obstructive sleep apnea.


Sleep Cycles

- Stage 1 transition from wake to sleep mixed frequency theta waves 5-10 minutes
- Stage 2 light sleep, temp and HR begin to decrease 20 minutes
- Stage 3 is transition between light and deep sleep, 20%-50% slow delta brain waves
- Stage 4 deep sleep >50% delta brain waves
- Stage 5 REM increased respiration and brain activity with mixed frequency theta waves

Hypothalamus triggers the release

- CRH (Corticotrophin releasing hormone) which activates the
- Pituitary Gland which releases the hormone
- ACTH (Adrenocorticotropic hormone) which is carried by the blood to the
- Adrenal gland which releases stress hormones
- Cortisol/ Adrenalin and Noradrenalin
- To assist the body deal with the stressor

Thyroid function

- Cortisol creates inactivation of T3 thyroid hormone shunting it into a form called reverse T3
- Almost any time thyroid hormones fall, body perceives stress and activates HPA and cortisol
- Body loses ability to regulate cortisol in perfect 24 hour rhythm
- Chronic thyroid and cortisol dysregulation can result in adrenaline acting as a substitute for cortisol creating panic feeling
 - Waking in panic at 2, 3 or 4 am

Moral of the story:

- Monitor your HRV for stress and for over training
- Monitor you HRV all night to check nervous system repair and ensure HRV has increasing trend

Dig Deeper with Kubios

Intro to Kubios

- Kubios is a tool used by scientists to do a deeper analysis of HRV.
 There is a free and paid version depending on what you want to do.
- Options Overview
 - Artifact correction
 - Analysis options

Examples

- Quality of reading and the importance of artifact removal
- Coherent example the effect of regular deep breathing
- Exercise example

